
Computational physics in the introductory calculus-based course
Ruth Chabaya� and Bruce Sherwoodb�

Department of Physics, North Carolina State University, Raleigh, North Carolina 27695

�Received 28 September 2007; accepted 21 December 2007�

The integration of computation into the introductory calculus-based physics course can potentially
provide significant support for the development of conceptual understanding. Computation can
support three-dimensional visualizations of abstract quantities, offer opportunities to construct
symbolic rather than numeric solutions to problems, and provide experience with the use of vectors
as coordinate-free entities. Computation can also allow students to explore models in a way not
possible using the analytical tools available to first-year students. We describe how we have
incorporated computer programming into an introductory calculus-based course taken by science
and engineering students. © 2008 American Association of Physics Teachers.
�DOI: 10.1119/1.2835054�
I. INTRODUCTION

In the past it was reasonable to divide the scientific �and
engineering� disciplines into theory and experiment. The
ubiquity of computers and computational tools has changed
this dichotomy significantly. Computation is a central tool in
both theory and experiment, has altered the nature of both in
fundamental ways, and has become a third pillar of physics.
In some cases it has blurred the distinction between theory
and experiment; for example, theorists perform Monte Carlo
calculations and high-energy experimentalists construct neu-
ral networks to identify particular events in a mass of data.
Just as beginning students have traditionally been introduced
to both theory and experiment in introductory courses, stu-
dents in these courses ought to be introduced to the role of
computation in science.

The traditional introductory physics course has changed
little in the past fifty years and, in most institutions, the
course runs smoothly. It is inevitable that the introduction of
a significant computational component into the course will
rock the boat, simply because we do not have fifty years of
experience to rely on in this area. Without this change, how-
ever, the course will become increasingly out of date, failing
to make contact with the practice of science, and will be-
come increasingly disconnected from the world in which stu-
dents live. The introductory biology course is now moving
toward the integration of a computational component.1 The
National Science Foundation with its new CPATH program2 is
trying to stimulate a much needed expansion of computa-
tional science in undergraduate science curricula by forging
alliances between computer scientists and natural scientists.

The potential benefits of the integration of computation,
including programming, into the course are high, and suffi-
cient experience has been gained to support departments and
instructors who wish to make this change. This article in-
cludes the details of one particular approach that has been
developed over the past ten years in the context of the Matter
& Interactions curriculum,3–7 and which has now been
adopted and adapted at other institutions. The particular fea-
tures of the computational environment in use �VPython,8 a
3D programming language� are described in an Appendix.
VPython, which is based on Python, is an open source

project and is free and available on all platforms.

307 Am. J. Phys. 76 �4&5�, April/May 2008 http://aapt.org/ajp
II. GOALS OF COMPUTATION
IN THE INTRODUCTORY COURSE

The introduction of computation into an introductory
course makes sense only to the extent that it supports the
goals of the course. Conceptual understanding of fundamen-
tal physics principles, and skill at solving a variety of prob-
lems, are typical desired outcomes of an introductory physics
course. The introduction of appropriate computational activi-
ties has the potential to contribute significantly to learning in
both of these areas.

A. Conceptual understanding of fundamental principles

The difficulty of building a firm conceptual understanding
of principles such as the momentum principle �Newton’s sec-
ond law� or the nature of a field is widely documented.9 One
factor that contributes to this difficulty is that the traditional
approach, limited to the use of algebra and simple calculus,
deals only with a small number of situations in which a
closed form solution is accessible. In mechanics, these situ-
ations include constant acceleration, constant speed circular
motion, and harmonic oscillations. In electricity and magne-
tism, expressions for the fields of various charge distribu-
tions are typically calculated only at special locations, such
as along the axes of dipoles, rods, and disks. Cognitive sci-
ence research has established that reasoning using mental
models which support step-by-step thinking about processes
is more natural and easier for novices than reasoning from
closed form constraint-based solutions.10 To understand the
dynamic nature of the momentum principle, for example, a
student might need the experience of applying it to predict
the motion of interacting objects, step by step, in an open-
ended manner. To understand the global nature of the super-
position principle, students might need the experience of di-
viding charge distributions into pieces and adding up their
vector contributions one at a time, watching the result accu-
mulate. Although these ideas may be central in instructors’
minds, for many introductory level students the analytical
use of calculus and a focus on closed-form solutions does not
connect to these procedures.

These insights may be difficult to obtain any other way.
Ganiel11 reported that in developing a unit on chaos, he and
his colleagues found that students who had completed the

traditional introductory physics course did not have a deter-

307© 2008 American Association of Physics Teachers



ministic view of classical mechanics. The group found it
necessary to create a module on determinism to precede the
material on chaos.

Our central goal of introducing computation into the intro-
ductory course is to provide experiences that can support the
students’ development of conceptual understanding of funda-
mental principles. Computational activities can also help stu-
dents make the connections between the formalism of inte-
gral calculus and the procedure of adding up discrete
quantities, a connection that is often not clear even to stu-
dents who have taken one or more semesters of calculus.

B. Visualization

Many of the quantities central to physics are abstract
three-dimensional vectors such as momentum, angular mo-
mentum, and electric and magnetic fields. These quantities
can change dynamically in time and space. Few students in
the introductory course have had previous practice imagining
a momentum vector changing in 3D as an object moves, or
imagining the varying magnetic field of a moving charge at
many locations throughout space. Although canned images
or movies can be useful, the experience of constructing dy-
namic 3D visualizations by using the basic principles of
physics can add concreteness to entities such as observation
locations and relative position vectors.

Interpreting 2D representations of 3D situations can be
difficult for novice students, even if the situation is one
which, to an expert, is adequately represented in 2D. For
example, although the trajectory of a particle in a cyclotron
is planar, we have observed even well-prepared students dis-
playing confusion about the process of accelerating a proton
when solving problems on paper or when writing computer
programs to model the process in 2D. However, in a 3D
programming environment, the addition of a 3D wire frame
model of the cyclotron dees and 3D arrows representing the
magnetic and electric fields clarified the situation for many
students. The interactivity of the 3D display, which the user
can zoom and rotate, was also a helpful feature.12

C. Modeling complex situations

Almost all of the problems solved by students in the tra-
ditional introductory course are highly idealized. This ideali-
zation contributes to the view held by many students that
physics has little or no relevance in the real world. Compu-
tational modeling provides a venue in which students can
begin with a simplified, idealized model of a situation, and
then add features which make the model more realistic. By
employing only the simplest numerical integration technique,
students can analyze situations that are not accessible ana-
lytically at the introductory level �or, in some cases, at any
level�, such as elliptical or parabolic orbits, three-body inter-
actions, 3D spring-mass oscillations, or motion damped by
air resistance, sliding friction, or viscous friction.

Electric and magnetic fields can be calculated and dis-
played at many observation locations, including locations not
on an axis of symmetry. Students can explore the range of
validity of approximations. For example, how far from the
perpendicular axis of a uniformly charged rod must an ob-
server be before the electric field differs significantly from
the field on the axis? How close to a dipole can an observa-
tion location be before the actual field differs from the ap-

3
proximate 1 /r field by a certain amount?

308 Am. J. Phys., Vol. 76, Nos. 4 & 5, April/May 2008
D. Rethinking the curriculum

The addition of a computational component to a course
necessarily requires that some existing content or component
be reduced. Thinking about how to make such a change in an
established curriculum offers a useful opportunity to reflect
on the underlying goals of the course. We should not assume
that the existing course content and pedagogy are necessarily
ideal; the traditional course was shaped in part by the limi-
tations of the mathematical tools available to beginning stu-
dents more than fifty years ago. For example, although much
work has been devoted to teaching the three solutions to the
equations of motion accessible with elementary calculus
�constant acceleration, constant-speed circular motion, and
harmonic oscillations�, restricting our discourse to these spe-
cial cases may not be adequate to allow students to see the
generality of the underlying principles. The considerations
leading to the particular set of choices we have made are too
involved to describe here; they are documented in Refs. 3–7.

III. PROS AND CONS OF PROGRAMMING

The ability to write a program to solve a problem is a
useful skill. In addition, programming offers practice in al-
gorithmic thinking, which is a powerful intellectual tool. Stu-
dents who are introduced to computational physics in the
introductory level course have a good foundation on which
to build in later physics courses and other computationally
oriented courses in science or engineering.

Programming is a powerful modern metaphor which has
had a major impact on thinking in all scientific disciplines.
An in-service high school physics teacher enrolled in a dis-
tance education version of Matter & Interactions reported
that when he read a popular science article about the model-
ing of weather and of climate, for the first time he had the
necessary background to understand the nature of such com-
puter modeling, and why weather prediction required smaller
cell sizes for accuracy than did climate modeling. Doing
computational physics in the form of programming, even at
the introductory level, can be an important component of a
general education for living in today’s world. Without this
experience, even people with a background in science may
not appreciate the strengths and limitations inherent in a re-
sult obtained from “computer modeling.”

There are many possible computational modalities that
might be productively incorporated into the calculus-based
introductory physics course. For example, students might
specify differential equations to be solved by an equation
solver, or vary parameters in a simulation. The goal of this
paper is not to survey all such modalities and tools, but to
discuss in some detail the rationale for having students write
programs and how we have integrated programming into the
course.

For the past decade we have incorporated programming
into introductory courses at Carnegie Mellon and North
Carolina State. The Matter & Interactions curriculum is also
being used in large courses at Purdue and Georgia Institute
of Technology and in small courses at institutions such as
Carleton. In these courses students write computer programs
as an integral part of the introductory course. The environ-
ment used, VPython, which is discussed in the Appendix, has
a number of features which make it particularly suitable for
this purpose. In the following, we discuss the positive and

negative aspects of integrating computer programming into

308Ruth Chabay and Bruce Sherwood



the introductory course. Although some of these aspects ap-
ply to any computational environment, some are specific to
programming, and some of these are specific to VPython.

A. Positive aspects of programming

Perhaps the most significant advantage of writing pro-
grams from scratch is that there are no “black boxes”: stu-
dents write all of the computational statements to model the
physical system and to visualize the abstract quantities. In
doing so, students must bring together various components
of their physics knowledge; for example, identify all interac-
tions, describe them mathematically, and correctly write and
apply fundamental principles such as the momentum prin-
ciple. All the physics is nakedly exposed in the program.

Creating a program gives students the opportunity to link
multiple representations: algebraic equations; the same equa-
tions translated into similar program syntax; an animation of
physical objects moving on the screen; a dynamic graph of a
quantity such as kinetic or potential energy that is generated
as objects move. Experts use multiple representations in
problem solving; novices need to practice connecting differ-
ent representations such as equations, graphs, and diagrams.
Writing program statements may be the only practice stu-
dents obtain in solving problems symbolically, because it is
increasingly the case in big introductory courses that daily
homework is done through a web-based homework system
which emphasizes randomized numerical answers. The ob-
served behavior of objects in a running program can support
connections between representations; for example, if the sign
of a gravitational force is reversed, the student may observe
a planet repelling a moon—a dramatic consequence of an
error in a symbolic statement.

Writing computer programs can vivify the universality of
fundamental physics principles. Students who write a pro-
gram to simulate Rutherford scattering sometimes spontane-
ously comment that their computation is essentially the same
as their earlier modeling of a binary star, despite the quanti-
tative difference between the gravitational and electric force,
and a difference of scale of 1023.

In VPython, coordinate-free vector operations can be done
directly in programming statements. For example, a relative
position vector can be calculated in a single vector subtrac-
tion statement involving 3D position vectors such as

r=Moon.pos–Earth.pos

Programming in this environment offers the opportunity to
conceptualize vectors as powerful single entities rather than
as trigonometric manipulations of components.

A computer program can be open-ended, allowing stu-
dents to observe the behavior of interacting objects indefi-
nitely into the future. This behavior can be interesting in
situations such as three-body motion, where the nature of the
trajectories is not obvious. It is easy to change a time step or
spatial increment in a program and observe the effects of this
change on the predicted behavior of the objects or predicted
pattern of fields.

Programming offers an opportunity for stimulating cre-
ativity in physics assignments, something that is more diffi-
cult to do with traditional homework. With a relatively small
investment, a student can go beyond what is required in an
assignment and explore modifications to a program which

can produce unusual, surprising, and beautiful results.

309 Am. J. Phys., Vol. 76, Nos. 4 & 5, April/May 2008
A practical consideration is that scientific programming
can be a highly useful skill for students in their later careers
in scientific or technical fields.

B. Negative aspects of programming

The most significant barrier to the integration of program-
ming into the introductory course is the fact that most stu-
dents have never before written a program. Current students
are very knowledgeable about all aspects of computers ex-
cept programming. At least half of the engineering and sci-
ence students at North Carolina State have never written any
kind of computer program before entering the introductory
mechanics course, and most of the other students have had
minimal experience. Time spent teaching programming con-
cepts and program syntax can decrease the time spent on
learning physics.

In an already full introductory physics curriculum, there is
little or no time to teach major programming skills. Students
who are new to programming are also new to the process of
debugging; teaching debugging strategies requires even more
time. �Many of the strategies used to debug a program are the
same strategies students should be using in checking and
correcting solutions to pencil and paper problems. However,
program bugs can provoke more frustration because the fail-
ure of a buggy program to run is much more salient than the
failure of a buggy written solution to produce a reasonable
answer.�

Working on programming activities only once a week in a
lab or recitation section may not be adequate to keep knowl-
edge of syntax and program structure fresh in the students’
minds. Especially early in a semester, there may be a startup
transient for each activity, in which the students need to call
up and refer to their previous programs to remind themselves
how to do something.

IV. HOW CAN PROGRAMMING IN AN
INTRODUCTORY COURSE BE FEASIBLE?

To integrate computation, especially programming, into an
introductory course, it is necessary to minimize the amount
of non-physics related material that must be taught. To do so
it is necessary to teach a minimal subset of programming
constructs; employ an environment and language that are
easy to learn and use; ensure that program constructs match
key physics constructs; provide a structured set of scaffolded
activities that introduce students to programming in the con-
text of solving physics problems; and provide a supervised
setting in which the students can work on these activities in
the presence of an instructor who can offer help with debug-
ging.

The minimum programming concepts required to imple-
ment and visualize simple physics models are the creation of
objects such as spheres and arrows to represent physical or
abstract entities; the specification of initial values and at-
tributes �including vector values such as velocity�; exactly
one way to iterate; and one way to update the value of a
variable or an attribute.

This minimal set of concepts will allow students to con-
struct programs that, although sometimes inelegant by pro-
fessional coding standards, will adequately embody physical
models. It is important to note some things that are intention-
ally not included in this list, including how to write user

interfaces, how to do graphics coding, and how to implement

309Ruth Chabay and Bruce Sherwood



more sophisticated numerical algorithms. These omissions
impose stringent conditions on the environment; in particu-
lar, graphical output and a basic user interface must be pro-
vided automatically, as effortless consequences of physics
computations.

A. An example of a student program

The following VPython program is an example of a mod-
erately complex program which models a restricted three-
body interaction involving a fixed Earth, a fixed Moon, and a
spacecraft. In the introductory course at North Carolina
State, students write a similar program during two one-hour
sessions �part of the lab activities for two successive weeks�,
at about the seventh and eighth weeks in the semester. Later

they add graphs of the kinetic energy and gravitational po-

310 Am. J. Phys., Vol. 76, Nos. 4 & 5, April/May 2008
tential energy versus the time to the program. After writing
the program, students explore initial conditions to see what
kinds of trajectories they can produce. The complex behavior
emerging from simple interactions illustrates the predictive
power of fundamental physics principles and is a graphic
example of the nature of the momentum principle. Although
the trajectory is an example of classical determinism, it is
extremely sensitive to the initial conditions, which hints at
one of the important aspects of chaos.

Note that the vector algebraic statements in VPython are a
direct conversion of the algebraic statements students write
on paper. Also note that in the loop there are no graphics
statements. The 3D display automatically updates many
times per second, using the updated object positions.

In Python a pound sign �#� introduces a comment. Here is

the complete program:
from _ _future_ _ import division # always do floating point arithmetic: 1/2 = 0.5
from visual import � # import 3D graphics module

#CONSTANTS
G = 6.7e−11
mEarth = 6e24
mcraft = 150e3
mMoon = 7e22
deltat = 100

#OBJECTS AND INITIAL VALUES
Earth = sphere(pos=vector(0, 0, 0), radius = 6.4e6, color = color.cyan)
craft = sphere(pos=vector(−10�Earth.radius, 0, 0), color = color.magenta)
vcraft = vector(0, 3.2703e3, 0)
pcraft = mcraft�vcraft
Moon = sphere(pos=vector(4e8, 0, 0),radius = 1.75e6)
pa = arrow(color=color.green) # arrow for representing momentum
sf = 0.1 # scale factor for displaying momentum arrow pa
trail = curve(color=craft.color) # craft trail: starts with no points
t = 0
scene.center = (Moon.pos.x/2, 0, 0) # instead of center of scene at origin

#CALCULATIONS

while t < 10�365�24�60�60: # continue plotting for 10 Earth years
rate(200) # slow down loop to make animation look nicer
re = craft.pos − Earth.pos
rehat = re/mag(re)
Fge = −rehat*G�mEarth�mcraft/mag(re)��2
rm = craft.pos−Moon.pos
rmhat = rm/mag(rm)
Fgm = −rmhat�G�mMoon�mcraft/mag(rm)��2
Fnet = Fge + Fgm
pcraft = pcraft + Fnet�deltat
craft.pos = craft.pos + (pcraft/mcraft)�deltat
pa.pos = craft.pos # position tail of momentum arrow on spacecraft
pa.axis = pcraft�sf # scale the arrow representing momentum
if mag(re) < Earth.radius:

break # leave loop if crashed on Earth
if mag(rm) < Moon.radius:

break # leave loop if crashed on Moon
trail.append(pos=craft.pos) # add new position of the craft to the trail
t = t + deltat

print ‘Calculations finished after ’, t, ‘seconds’
310Ruth Chabay and Bruce Sherwood



A snapshot of the screen display produced by the program
is shown in Fig. 1. Note that the length of an arrow repre-
senting the momentum �in kg·m /s� must be scaled to fit on
the display, whose width is in �virtual� meters. Such scaling
is an issue of representation in all physics diagrams, but it
arises explicitly only in this computational environment,
which presents an opportunity to distinguish between ab-
stract vectors �here, momentum� and their representation as
arrow objects.

One reason the students’ code need not be elegant is that
the programs they write are very short. In most problems
appropriate to the introductory course, sophisticated algo-
rithms are not needed because computers are now fast
enough to make it possible to increase the accuracy of an
Euler integration adequately simply by reducing the step
size.13

Figure 2 represents the 3D motion of a mass hanging from
a spring. Students are challenged to find initial conditions
that produce oscillations in 3D; they are often intrigued by
the patterns their programs can produce.

B. Choosing a computational tool

The choice of a computational tool is often unnecessarily
contentious. Ideally, students should have the opportunity

Fig. 1. Restricted three-body program written by a student: a spacecraft
coasting near a stationary Earth and stationary Moon. An arrow represents
the current momentum of the spacecraft. �The sphere representing the Moon
is very small because the Earth and Moon are drawn to scale.�

Fig. 2. Program written by a student to model the 3D motion of a mass
hanging from a spring leaving a trail. Students did experiments with a simi-

lar apparatus.

311 Am. J. Phys., Vol. 76, Nos. 4 & 5, April/May 2008
during their undergraduate years to use several different
kinds of tools including an algorithmic programming lan-
guage such as C++, Java, or Python; a symbolic processor
such as Maple or Mathematica; an environment such as
Matlab; and a spreadsheet. Each tool has particular advan-
tages for certain uses. It is important to keep in mind that no
matter what tools a student uses today, different tools will be
popular tomorrow. Learning a programming language can
provide a foundation for learning new tools in the future.

V. COMPUTATIONAL ACTIVITIES

After a decade of work on developing computational ac-
tivities for the introductory course, we cannot claim that our
instructional sequence realizes the full educational potential
of computation that we have outlined in previous sections.
Much research and development still remains to be done in
this area. However, we now have a sufficient collection of
activities to make it possible for other instructors to build on
what we have developed.14

The following lists detail the sequence of computing ac-
tivities in recent offerings of the introductory course at North
Carolina State, using Matter & Interactions. The specific ac-
tivities vary somewhat from one semester to the next. Recent
versions of each of these assignments are available.15

A. Mechanics

In dynamics problems involving computer modeling, the
momentum principle is invoked to predict the behavior of
objects or systems of objects ��p=Fnet�t for sufficiently
small values of �t�. Given the initial positions of the inter-
acting objects and a force law, we can calculate the forces the
objects exert on each other. These forces can be applied for a
short time to update the momenta, and the new momenta can
be used to update the positions of the objects. The student
writes a simple computer program to repeat this process
many times. In these problems, kinematics is united with
dynamics: changes in motion are clearly caused by interac-
tions. The total energy of the system can be plotted as a
check on the accuracy of the calculations. Simultaneous con-
sideration of momentum and energy also helps students dis-
tinguish between these concepts.

The following computational activities are part of the first
semester introductory course.

�1� Introduction to VPython and 3D vectors. Create sphere
objects, display 3D arrows to represent position vectors,
including relative position vectors. Learn to use sym-
bolic names to perform vector operations.

�2� After experimenting with a fan-driven cart, write a pro-
gram to model the motion of such a cart on a track by
writing an iterative loop containing updates of the mo-
mentum and position. Empirically determine the initial
conditions that produce certain behavior; experiment
with �unphysical� nonzero y or z component of velocity.

�3� A sequence on gravitational interactions.
�a� Compute and display the 3D gravitational force

exerted by a planet on a spacecraft at different
static locations.

�b� Launch a spacecraft near Earth. Model the motion
of the craft under the influence of the changing
gravitational force. Observe the effect of initial

conditions on the shape of the orbit.

311Ruth Chabay and Bruce Sherwood



�c� Consider a spacecraft, fixed Earth, and fixed
Moon �see Fig. 1�. Explore the effect of the initial
velocity on the trajectories.

�d� Add graphs of the kinetic energy, gravitational po-
tential energy, and the sum for the spacecraft,
fixed Earth, and fixed Moon. Graphs are generated
in real time as the motion occurs.

�e� Alternatively model the motion of a binary star
system in a frame of reference in which the total
momentum of the system is nonzero.

�4� A sequence on spring-mass oscillations.
�a� After experimenting with real spring-mass oscilla-

tors, write a program to model the motion of 1D
and 3D vertical oscillators, using experimental
data for mass, spring length, and spring stiffness.
Compare the predicted and observed behavior. For
1D oscillations, plot y versus t. Find initial condi-
tions that produce 3D oscillations �Fig. 2�

�b� Add energy plots to the spring-mass program.

�5� Rutherford scattering �two moving particles�: compute
and display the motion of an alpha particle approaching
a gold nucleus, and construct graphs of the horizontal
and vertical components of the momentum for each par-
ticle. Vary the impact parameter and observe the effects.

�6� A sequence on entropy, temperature, and specific heat
capacity of a solid.16

�a� Plot the number of ways to distribute a fixed
amount of energy between two nanoparticles
modeled as Einstein solids �independent quantized
oscillators�. Vary the sizes of the two nanopar-
ticles to observe that equipartition of energy is
most probable.

�b� Graph the entropy in terms of the natural loga-
rithm of the results from the previous program.

�c� Compute the temperature from the inverse rate of
change of the entropy with energy added to a
nanoparticle.

�d� Compute and graph the specific heat �from second
differences� as a function of temperature for alu-
minum and lead. Experimental data are provided.
Vary the effective stiffness of the interatomic bond
to fit the curves to data. Good fits are observed
with a stiffness that is consistent with measure-
ments of Young’s modulus. �Students had previ-
ously measured Young’s modulus for another
metal in the lab.�

B. Electricity and magnetism

Calculating and visualizing electric fields involves the
same vector operations used to calculate gravitational forces
in the mechanics course and the same issues with scaling
arrows arise. One goal of this activity is to give students a
sense of the 3D character of the fields. VPython automati-
cally allows the user to rotate and zoom using the mouse,
which enhances 3D perception.

The following computational activities are part of the sec-
ond semester introductory course. The Advanced items have
been used successfully with advanced or honors students.

�1� Introduction to VPython and 3D vectors. �For those stu-
dents who previously took the mechanics course, this

introduction is a review.�

312 Am. J. Phys., Vol. 76, Nos. 4 & 5, April/May 2008
�2� A sequence on electric fields, distributed charges, and
superposition.
�a� Compute and display with arrows the electric field

at various 3D locations near a positive or negative
point charge.

�b� Compute and display the electric field of a dipole.
First use of the superposition principle. Display
the field at various 3D locations, including off-
axis locations.

�c� Compute and display the electric field of a uni-
formly charged rod or ring. Model the object as a
line �or circle� of point charges. Experiment with
the effect of increasing or decreasing the number
of charges used to model the object. Calculate and
display the field at locations where an analytical
solution is not available.

�3� A sequence on magnetic fields and forces.
�a� Use the Biot–Savart law to calculate and display

the magnetic field of a moving proton at several
locations as the proton moves in a straight line.
Note that the field at a particular location varies as
the source moves.

�b� Compute and display the helical motion of a pro-
ton in a uniform magnetic field.

�c� Advanced: Model the motion of a proton in a cy-
clotron showing the electric and magnetic fields
affecting its motion.

�d� Advanced: Calculate the magnetic field throughout
a solenoid of finite length using the Biot–Savart
law.

�4� Advanced: Compute the motion of a positron in a sinu-
soidal electromagnetic wave showing the dynamically
varying electric and magnetic field vectors along a line.
Start a positron at rest and model its motion �relativisti-
cally� under the influence of the electric and magnetic
fields �ignoring radiation by the accelerated positron�.

ACKNOWLEDGMENTS

These developments were supported in part by the Na-
tional Science Foundation through Grant Nos. DUE-
0320608, DUE-0237132, and DUE-0618504.

APPENDIX: THE VPYTHON PROGRAMMING
ENVIRONMENT

Our choice of a programming environment for a first ex-
posure to scientific computation is based on the desire to
ease students into programming and to give them the oppor-
tunity to develop a conceptual model of what a program is
and what it does.

Among algorithmic programming languages, Python17 is
increasingly used in a variety of environments. Python has a
good reputation among computer scientists because of its
clean design and object-oriented nature, and it is sometimes
the preferred first language for introducing programming to
students. There is a comprehensive library of modules for
tasks as diverse as manipulating images and running web
servers. There is a large community of scientific users.18

Much of the programming done by Google is in Python, and
programmers knowledgeable in Python are in demand.

Python is maintained and extended by a large community

of users. It is open source, multi-platform, and free. A recent

312Ruth Chabay and Bruce Sherwood



special issue of Computing in Science & Engineering was
devoted to the use of Python.19

VPython is the name given to the combination of Python
plus a module called Visual �and the numpy module, which
is the basis for Visual’s vector capabilities�. The Visual mod-
ule and numpy are also open source, multiplatform, and free.
Visual adds to Python the easy creation of navigable 3D
animations and the ability to manipulate 3D vectors math-
ematically, instead of dealing only with separate components
of vectors.

VPython was created in 2000 by David Scherer,20 then an
undergraduate student at Carnegie Mellon, who, after taking
the Matter & Interactions course, had the original idea of
making navigable 3D animations be a side effect of physics
computations. While the calculations are being done, a par-
allel thread periodically �many times per second� creates a
3D image in OpenGL corresponding to the current attributes
of objects declared by the program. The effect is that, with-
out any explicit graphics statements in the computational
loop, a window appears with a 3D animation of the motion
of the objects created by the program, and the user can navi-
gate in the scene by rotating and zooming with the mouse.

Because VPython supports standard vector computations,
students are encouraged to view vectors as powerful tools for
analysis rather than as unpleasant trigonometry. After estab-
lishing initial conditions within a standard 3D Cartesian co-
ordinate system, all of the iterative computations are written
as coordinate-free vector statements. In the example program
reproduced in Sec. IV A, the relative position vector between
two bodies is calculated by vector subtraction, the unit vector
is calculated by dividing the relative position vector by its
magnitude, and the gravitational force is calculated as a
product of the magnitude and the unit vector, which is cal-
culated by dividing the relative position vector by its magni-
tude. �There exists a norm�� function to calculate a unit vec-
tor directly, but beginning students often find it clearer to
replicate in code the calculation they do on paper.� The net
force �a vector� is used to update the momentum �a vector�,
and the position updates are also written as vector
statements.

a�Electronic address: ruth_chabay@ncsu.edu
b�Electronic address: bruce_sherwood@ncsu.edu
1“BIO2010: Transforming undergraduate education for future research bi-
ologists,” �www.nap.edu/openbook.php?isbn�0309085357�.

2“CISE pathways to revitalized undergraduate computing education
313 Am. J. Phys., Vol. 76, Nos. 4 & 5, April/May 2008
�CPATH�,” �www.nsf.gov/pubs/2006/nsf06608/nsf06608.htm�.
3R. Chabay and B. Sherwood, Matter & Interactions I: Modern Mechanics
and Matter & Interactions II: Electric & Magnetic Interactions �Wiley,
New York, 2007�, 2nd ed.; also see �www4.ncsu.edu/~rwchabay/mi�.

4R. Chabay and B. Sherwood, “Bringing atoms into first-year physics,”
Am. J. Phys. 67�12�, 1045–1050 �1999�.

5R. Chabay and B. Sherwood, “Modern mechanics,” Am. J. Phys. 72�4�,
439–445 �2004�.

6R. Chabay and B. Sherwood, “Restructuring the introductory electricity
and magnetism course,” Am. J. Phys. 74�4�, 329–336 �2006�.

7R. Chabay and B. Sherwood, “Matter & interactions,” in Research-Based
Reform of University Physics, edited by E. F. Redish and P. J. Cooney
�www.compadre.org/per/per_reviews/volume1.cfm�.

8VPython, �vpython.org�.
9L. C. McDermott and E. F. Redish, “Resource Letter: PER-1: Physics
Education Research,” Am. J. Phys. 67�9�, 755–767 �1999�.

10P. N. Johnson-Laird, Mental Models: Towards a Cognitive Science of
Language, Inference and Consciousness �Harvard U. P., Cambridge, MA,
1986�.

11 Uri Ganiel, private communication �January 2005�.
12B. Tversky, J. B. Morrison, and M. Betrancourt, “Animation: Can it

facilitate?,” Int. J. Hum.-Comput. Stud. 57, 247–262 �2002�.
13A notable previous effort to incorporate computational physics in the

form of programming into an introductory course is discussed in E. F.
Redish and J. M. Wilson, “Student programming in the introductory
physics course: M.U.P.P.E.T.,” Am. J. Phys. 61, 222–232 �1993� and
�www.physics.umd.edu/ripe/muppet/papers.html�. This project involved a
small course for physics majors, many of whom had extensive prior pro-
gramming experience. Because the computers available at the time were
much slower than current computers, it was necessary to employ sophis-
ticated Runge-Kutta algorithms in the programs. Interactive 3D graphics
were not a possibility �the only output was graphs�. Many lines of setup
code were necessary for even a simple program. The major increases in
the capabilities of both hardware and software since that period have led
to a qualitative change in what is feasible in an ordinary instructional
setting.

14Some of the activities, particularly some of the carefully scaffolded se-
quences, were developed by Matthew Kohlmyer as part of his Ph.D.
dissertation, in which he studied some of the difficulties encountered by
introductory students in programming assignments. M. Kohlmyer, Ph.D.
thesis, Carnegie Mellon University, 2005.

15Matter & Interactions computational labs:
�www.compadre.org/psrc/items/detail.cfm?ID�5692�.

16The statistical treatment of entropy, temperature, and specific heat capac-
ity in Matter & Interactions �Ref. 3� is based on T. Moore and D.
Schroeder, “A different approach to introducing statistical mechanics,”
Am. J. Phys. 65, 26–36 �1997�.

17Python �python.org�.
18See �www.scipy.org�.
19Comput. Sci. Eng. 9�5�, �2007�, Special Issue.
20D. Scherer, P. Dubois, and B. Sherwood, “VPython: 3D interactive sci-

entific graphics for students,” Comput. Sci. Eng. 2�5�, 56–62 �2000�.
313Ruth Chabay and Bruce Sherwood


